Title: Knowledge-graph approaches to predict adverse events from electronic health records
Speakers: Paola Galdi
Abstract:
With older age, there is an increased chance of being diagnosed with more than one long-term condition. The medical treatment of patients with multiple conditions is challenging because the interactions of symptoms and medications are complex and hard to predict. In this talk, I will discuss an ongoing project using knowledge-graph methods to detect people who are likely to have unexpected health problems (like falls or bleeding), with the ultimate goal of supporting doctors in the choice of proper treatment and preventive care. I will briefly introduce the Clinical Practice Research Datalink (CPRD) dataset and the data model underlying the knowledge graph. I will then present a first attempt at repurposing a knowledge graph recommender system (KGAT) in the context of adverse events predictions. I will conclude with an overview of the challenges and open questions left to address.